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INTRODUCTION

Given a matrix A= {a,,} (n, k=0, 1, 2,..) and a sequence {s,}, the
notation s, — s(4) means that >*_, a,,5, converges for n=0, 1, 2,... and
tends to s as n— oo. The matrix 4 is said to be regular if s, s(A)
whenever s, — 5. Necessary and sufficient conditions for A to be regular are

fo. o)
sup Y. la,,l < oo;
n k=0

lim a,,=0, k=0,1,2,.;

n— oo

lim Z p=1.
k_

n— o0 _‘0
Suppose throughout that {4,} is a sequence with
Ao=0and 4,>0 for n>0. (1)

Let Q be a simply connected region that contains every positive 4,, and
suppose that, for n=0, 1, 2,..., I, is a positively sensed Jordan contour
lying in £ and enclosing every A,eQ with 0<k <n. Suppose that f is
holomorphic in Q and that f(4,) is defined even when A, ¢ . Define

1 f(z)dz
"2milr, (Ag—2)- (A, 2)
=0 for k>n, (2)
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Apie = =iy + 0y for 0<k<n,
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where &, = f(4,) if k=0 and A,¢Q, and §,=0 otherwise. Here and
elsewhere the convention that products like 4,,,---4,=1 when k=n is
observed. In many applications f is a Mellin transform

fie) =] raate) 3)

where a € BV, the space of functions of bounded variation on [0, 1]. In this
case the region ©Q in which f is holomorphic contains {z: Re(z)>0}; if
0=A,¢ Q and, with this fin (2), the order of integration is changed, then
the value of 4, is unaffected by allowing I, also to enclose 4, and taking
d,=0.

Matrices whose entries are given by (2) are called generalized Hausdorff
matrices. The most familiar examples are those for which f(z) is given by
(3)If0=2<4, < - <4,,4,—» o and 3_°_, (1/4,)= o, then (2) yields
the matrices considered by Hausdorff in [3]; further, if 4, = n, they are the
matrices discussed by Hausdorff in [2] (see also Hardy [4]). The latter
include the familiar Cesaro, Holder, and Euler matrices.

For 0 <<, let 4,,(7) denote the value of 4, , obtained from (2) by tak-
ing f(z)=1+, and let 4,,(0)=4,,(0+). Note that, from the theory of
residues, 4,,,(¢), for 1> 0, is a linear combination of the functions t* log’(¢),
s=0,1,2,., r=0,1,2,., the coefficient of % being 1 when i,=0. Hence,
since 4,>0 for s> 1,

A..0)=1 ifk=0and 1,=0,
=0 otherwise 4)

(cf. [1, p. 947]).
Let

Dy=(1+4y)dy=1, (5)

1 1 1
D,={1+— Noie )2
! <+11>(1+/12> (Hx) (1+4,)d, forn=1.  (6)

n

Then, for n>=0,

Dn=1n+ldn+1=1_d0+ Z dk' (7)

k=0

It is known that if all the A,’s are different, then

1
[ Ay di=dyp, for O<ksn. (8)
]
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See [3, p. 294]. A simple continuity argument applied to (2), with f(z)=¢*,
shows that (8) remains valid when different 1,’s are allowed to coalesce.
The generalized Hausdorff matrix M,={a,,} with a,,=d,/D, for
0<k<n is a weighted mean matrix when d,=1 and otherwise differs in
only a minor way from a weighted mean matrix. Conversely, every
weighted mean matrix with positive weights may be regarded, in view of
(5), (6), (7), and (8), as a generalized Hausdorff matrix with 1,=0. The
matrix M, is regular if and only if D, — oo. Note the following equivalen-
ces:

D, — oo is equivalent to = o0;

|| [\’]8

1
| An
d,/D,— 0is equivalent to /1 — 00;

d,/D,\is equivalent to 4, 7.

REGULARITY

In this section conditions are established for the regularity of generalized
Hausdorff matrices. The following lemma is required; it concerns matrices
{2,4} given by (2) with the function f satisfying, for some real number c, a
condition of the form

(—=1)Yf(x)=0 for r=0,1,2,..and x>c; 9)
and the region @, in which f is holomorphic, satisfying the condition
2>(c, ). (10)

LemMa 1. (i) If (9) and (10) hold with ¢=0, then [,=lim,_ , A,
exists for k=0, 1, 2,.... If, in addition,

f% 0, (11)

then 1, =0 for k=1, 2, 3,..., and [,=0 if 1,>0.
(it) If Lo=0, (9) and (10) hold with ¢ = —¢ for some £¢>0, and (11)
holds, then I,=0.

Proof. If a<,<bfor k<v<n, then

1 J‘ f(2) dz _(—1)”"‘

n—k)
C 2mi i Ge—2z) (A —2) (n—k)! A (&) (12)
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for some £e[a, b]. (See Lorentz [5].) Further, the recursion formula

A= Ans 1= G i dnsihr1 = Aedna 1)/ An iy for 0<k<n

is an immediate consequence of (2). Letting 4, ,=3*%_, 4, for0<k<n, it
follows, as in Hausdorff [3], that

An,k—An+l,k:(lk+]ln+l,k+l“'10'111+l.0)/’1n+1' (13)

Suppose now that i,=0, then, by (12), 4,,,,,,>0 so that, by (13),
A2 A, 1.0 Hence, L,=lim,_ ., A,, exists and so does /. =
L,~L,_,=lim,_ . 4,, (with L_, =0). Equation (13) also shows that, for
k=0,1,2,., the series 34 A, 14+ 1/4,+ 1S convergent; consequently, by
(1), ,=0for k=1, 2,...

Next, suppose that A,>0. Define Z,=0 and 1,=4, , for n=1,2,3,..,
and define 7, in the same way as A,, but with 1, replacing A,. Then
Ak =2Ans14+1 for 0<k<n, and hence [, =lim, , o A, =0, =lim,_ .
Znv1x+1=0for k=0,1,2,.. This establishes (i).

Suppose now the hypotheses of (ii) hold. Then, for sufficiently small
positive 7,

L )
in,O— iliz anHiJ\rn—-Z(ll"‘z)”'(in—z)
G G 2
T
flz—n)dz

rn(n—z0A+n—z)(4,+n—2)

where 0<y,=4,4, 4, /(A +n) (A, +n)<1l. Since Y=, 1/(A,+
n)=co when (11) holds, it follows from the earlier part of the proof that
{,=0. This completes the proof.

It follows from Lemma 1, with f{(z) =¢°, and from (4) that, for 0<s<1,

lim A,.(f)=1 ift=0,k=0,and i,=0,

n— o0

=0 otherwise. (14)

Next, for 1,=0, one has [5, p. 46]

IS UL
Eoem2) G —2)

n
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and hence if 0 € 2 (so that f is holomorphic at 0), then

For 24>0, put 1,=0, Z,=4, , for n>1, to get
n+1

g = Z Zn+x,k_1n+1,0“’f(0)
k=0

provided that 7, ,,— 0. In particular, with f(z)= ¢, this, together with
(12), yields

0<i ()<Y Auln)<l (15)

and, in view of (4),

lim Y A,(0)=0 iftr=0andi;>0,
n—w g (16)
=1 otherwise.

Borwein and Jakimovski show in [1] that if (11) holds and 4, — oo,
then for the matrix given by (2) to be regular, it is necessary that f(z) = [}
t* do(t) for some a e BV. There is thus no real loss in so restricting f in the
following theorem.

THEOREM 1. Suppose that (11) holds and f(z)= |} ¢* du(t) for some
o€ BV with

(1) —a(0) = 1 (17)

and

a(0+)=a(0). (18)

Then the matrix {4,,} defined by (2) is regular.

Proof. By Lebesgue’s theorem on bounded convergence, it follows from
(14) and (18) that, for k=0, 1, 2,..,,

1
Ak =L Aoty da(t) =0 asn— oo;
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and from (16) and (18) that

n 1 n 1
Y ln,k=j (Z j’n,k“)) da(t)—»f da(t)  asn— 0.
k=0 0 \k=0 0

Also, from (15),
n 1
5 Vil <[ ldn(e)]
k=0 o

In view of (17), the matrix is regular.

GENERALIZED HOLDER AND CESARO MATRICES
The next lemma concerns products of certain matrices.

LEMMA 2. Suppose that g and h are holomorphic in Q and are defined at
Ao even when Ay ¢ Q. Let A, B, and C be the Hausdorff matrices given by (2)
with f replaced by g, h, and gh, respectively. Then C= AB.

Proof. 1t is sufficient to establish the result for A, =0 since the general
result then follows in the usual manner by defining Z,=0and 1,=4, , for
nzl. Form=0,1,2,.let 4, B,,, and C,, be the principal m x m minors
of the matrices A, B, and C, respectively. It is now sufficient to show that
C,=A4,B,. Suppose first that A,, 4,.., 4,, are distinct. Then, as in
Hausdorff [3], there is a matrix p such that 4, = p 'ap, B,,=p 'Bp, and
C,,=p 'afp, where « and B are the diagonal matrices with g(k) and A(k),
respectively, in the kth position along the diagonal. Thus C,, = 4,,8,,, and
a continuity argument shows that this equation remains valid if certain of
the A,’s are allowed to coalesce. This completes the proof.

For k real, the Holder matrix H, is the generalized Hausdorff matrix
obtained from (2) by taking

flZ)=(z+1)"

For k> —1, the Cesaro matrix C, is the generalized Hausdorff matrix
obtained from (2) by taking

I'k+1)I(z+1)

S =—Fr D

Hausdorff, in [3], showed that if O0=l,<i; < - <i,->w, X2,

(1/4,)= o0, and k> —1, then H, and C, are quivalent: ie., s, > s(H,) if
and only if 5, — s(C,). It is now easy to extend the result as follows.
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THEOREM 2. Suppose 1,20, 1,>0 for n21, ¥* | (1/4,)=©, and
k> —1. Then H, and C, are equivalent.
Proof. Let
Ik+1)I(z+1)
glz)=
I'k+z+1)

(z+ 1)~

It follows from results of Rogosinski [6, pp.188ff, 167] that g(z)=[}
rduy(t) and 1/g(z)=[ 7" duy(t) where a,€BV, o(0+)=a/0), and
a{l)—af0)=1 for i=1,2. The desired conclusion now follows from
Theorem 1 and Lemma 2.
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