On Generalized Hausdorff Matrices*

David Borwein, F. Peter Cass, and John E. Sayre
Department of Mathematics, University of Western Ontario, London, Ontario, N6A 5B9, Canada
Communicated by R. Bojanic

Received February 23, 1984; revised March 20, 1984

DEDICATED TO THE MEMORY OF GÉZA FREUD

Introduction

Given a matrix $A=\left\{a_{n, k}\right\}(n, k=0,1,2, \ldots)$ and a sequence $\left\{s_{k}\right\}$, the notation $s_{n} \rightarrow s(A)$ means that $\sum_{k=0}^{\infty} a_{n, k} s_{k}$ converges for $n=0,1,2, \ldots$ and tends to s as $n \rightarrow \infty$. The matrix A is said to be regular if $s_{n} \rightarrow s(A)$ whenever $s_{n} \rightarrow s$. Necessary and sufficient conditions for A to be regular are

$$
\begin{aligned}
& \sup _{n} \sum_{k=0}^{\infty}\left|a_{n, k}\right|<\infty \\
& \lim _{n \rightarrow \infty} a_{n, k}=0, \quad k=0,1,2, \ldots \\
& \lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n, k}=1 .
\end{aligned}
$$

Suppose throughout that $\left\{\lambda_{n}\right\}$ is a sequence with

$$
\begin{equation*}
\lambda_{0} \geqslant 0 \text { and } \lambda_{n}>0 \text { for } n>0 . \tag{1}
\end{equation*}
$$

Let Ω be a simply connected region that contains every positive λ_{n}, and suppose that, for $n=0,1,2, \ldots, \Gamma_{n}$ is a positively sensed Jordan contour lying in Ω and enclosing every $\lambda_{k} \in \Omega$ with $0 \leqslant k \leqslant n$. Suppose that f is holomorphic in Ω and that $f\left(\lambda_{0}\right)$ is defined even when $\lambda_{0} \notin \Omega$. Define

$$
\begin{align*}
\lambda_{n, k} & =-\lambda_{k+1} \cdots \lambda_{n} \frac{1}{2 \pi i} \int_{\Gamma_{n}} \frac{f(z) d z}{\left(\lambda_{k}-z\right) \cdots\left(\lambda_{n}-z\right)}+\delta_{k} & & \text { for } 0 \leqslant k \leqslant n, \\
& =0 & & \text { for } k>n,
\end{align*}
$$

[^0]where $\delta_{k}=f\left(\lambda_{0}\right)$ if $k=0$ and $\lambda_{0} \notin \Omega$, and $\delta_{k}=0$ otherwise. Here and elsewhere the convention that products like $\lambda_{k+1} \cdots \lambda_{n}=1$ when $k=n$ is observed. In many applications f is a Mellin transform
\[

$$
\begin{equation*}
f(z)=\int_{0}^{1} t^{z} d \alpha(t) \tag{3}
\end{equation*}
$$

\]

where $\alpha \in B V$, the space of functions of bounded variation on $[0,1]$. In this case the region Ω in which f is holomorphic contains $\{z: \operatorname{Re}(z)>0\}$; if $0=\lambda_{0} \notin \Omega$ and, with this f in (2), the order of integration is changed, then the value of $\lambda_{n, k}$ is unaffected by allowing Γ_{n} also to enclose λ_{0} and taking $\delta_{0}=0$.

Matrices whose entries are given by (2) are called generalized Hausdorff matrices. The most familiar examples are those for which $f(z)$ is given by (3). If $0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}, \lambda_{n} \rightarrow \infty$ and $\sum_{n=1}^{\infty}\left(1 / \lambda_{n}\right)=\infty$, then (2) yields the matrices considered by Hausdorff in [3]; further, if $\lambda_{n}=n$, they are the matrices discussed by Hausdorff in [2] (see also Hardy [4]). The latter include the familiar Cesàro, Hölder, and Euler matrices.

For $0<t \leqslant 1$, let $\lambda_{n, k}(t)$ denote the value of $\lambda_{n, k}$ obtained from (2) by taking $f(z)=t^{2}$, and let $\lambda_{n, k}(0)=\lambda_{n, k}(0+)$. Note that, from the theory of residues, $\lambda_{n, k}(t)$, for $t>0$, is a linear combination of the functions $t^{\lambda_{s}} \log ^{r}(t)$, $s=0,1,2, \ldots, r=0,1,2, \ldots$, the coefficient of $t^{\lambda_{0}}$ being 1 when $\lambda_{0}=0$. Hence, since $\lambda_{s}>0$ for $s \geqslant 1$,

$$
\begin{align*}
\lambda_{n, k}(0) & =1 & & \text { if } k=0 \text { and } \lambda_{0}=0, \\
& =0 & & \text { otherwise } \tag{4}
\end{align*}
$$

(cf. [1, p. 947]).
Let

$$
\begin{gather*}
D_{0}=\left(1+\lambda_{0}\right) d_{0}=1, \tag{5}\\
D_{n}=\left(1+\frac{1}{\lambda_{1}}\right)\left(1+\frac{1}{\lambda_{2}}\right) \cdots\left(1+\frac{1}{\lambda_{n}}\right)=\left(1+\lambda_{n}\right) d_{n} \text { for } n \geqslant 1 . \tag{6}
\end{gather*}
$$

Then, for $n \geqslant 0$,

$$
\begin{equation*}
D_{n}=\lambda_{n+1} d_{n+1}=1-d_{0}+\sum_{k=0}^{n} d_{k} . \tag{7}
\end{equation*}
$$

It is known that if all the λ_{n} 's are different, then

$$
\begin{equation*}
\int_{0}^{1} \lambda_{n, k}(t) d t=d_{k} / D_{n} \quad \text { for } \quad 0 \leqslant k \leqslant n . \tag{8}
\end{equation*}
$$

See [3, p. 294]. A simple continuity argument applied to (2), with $f(z)=t^{z}$, shows that (8) remains valid when different λ_{n} 's are allowed to coalesce. The generalized Hausdorff matrix $M_{d}=\left\{a_{n, k}\right\}$ with $a_{n, k}=d_{k} / D_{n}$ for $0 \leqslant k \leqslant n$ is a weighted mean matrix when $d_{0}=1$ and otherwise differs in only a minor way from a weighted mean matrix. Conversely, every weighted mean matrix with positive weights may be regarded, in view of (5), (6), (7), and (8), as a generalized Hausdorff matrix with $\lambda_{0}=0$. The matrix M_{d} is regular if and only if $D_{n} \rightarrow \infty$. Note the following equivalences:

$$
\begin{aligned}
D_{n} & \rightarrow \infty \text { is equivalent to } \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty ; \\
d_{n} / D_{n} & \rightarrow 0 \text { is equivalent to } \lambda_{n} \rightarrow \infty ; \\
d_{n} / D_{n} & \searrow \text { is equivalent to } \lambda_{n} \lambda .
\end{aligned}
$$

Regularity

In this section conditions are established for the regularity of generalized Hausdorff matrices. The following lemma is required; it concerns matrices $\left\{\lambda_{n, k}\right\}$ given by (2) with the function f satisfying, for some real number c, a condition of the form

$$
\begin{equation*}
(-1)^{r} f^{(r)}(x) \geqslant 0 \quad \text { for } \quad r=0,1,2, \ldots \text { and } x>c \tag{9}
\end{equation*}
$$

and the region Ω, in which f is holomorphic, satisfying the condition

$$
\begin{equation*}
\Omega \supset(c, \infty) \tag{10}
\end{equation*}
$$

Lemma 1. (i) If (9) and (10) hold with $c=0$, then $l_{k}=\lim _{n \rightarrow \infty} \lambda_{n, k}$ exists for $k=0,1,2, \ldots$ If, in addition,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty \tag{11}
\end{equation*}
$$

then $l_{k}=0$ for $k=1,2,3, \ldots$, and $l_{0}=0$ if $\lambda_{0}>0$.
(ii) If $\lambda_{0}=0$, (9) and (10) hold with $c=-\varepsilon$ for some $\varepsilon>0$, and (11) holds, then $l_{0}=0$.

Proof. If $a \leqslant \lambda_{v} \leqslant b$ for $k \leqslant v \leqslant n$, then

$$
\begin{equation*}
-\frac{1}{2 \pi i} \int_{\Gamma_{n}} \frac{f(z) d z}{\left(\lambda_{k}-z\right) \cdots\left(\lambda_{n}-z\right)}=\frac{(-1)^{n-k}}{(n-k)!} f^{(n-k)}(\xi) \tag{12}
\end{equation*}
$$

for some $\xi \in[a, b]$. (See Lorentz [5].) Further, the recursion formula

$$
\lambda_{n, k}-\lambda_{n+1, k}=\left(\lambda_{k+1} \lambda_{n+1, k+1}-\lambda_{k} \lambda_{n+1, k}\right) / \lambda_{n+1} \quad \text { for } 0 \leqslant k \leqslant n
$$

is an immediate consequence of (2). Letting $A_{n, k}=\sum_{v=0}^{k} \lambda_{n, v}$ for $0 \leqslant k \leqslant n$, it follows, as in Hausdorff [3], that

$$
\begin{equation*}
\Lambda_{n, k}-A_{n+1, k}=\left(\lambda_{k+1} \lambda_{n+1, k+1}-\lambda_{0} \lambda_{n+1,0}\right) / \lambda_{n+1} . \tag{13}
\end{equation*}
$$

Suppose now that $\lambda_{0}=0$, then, by (12), $\lambda_{n+1, k+1} \geqslant 0$ so that, by (13), $\Lambda_{n, k} \geqslant A_{n+1, k} \geqslant 0$. Hence, $L_{k}=\lim _{n \rightarrow \infty} \Lambda_{n, k}$ exists and so does $l_{k}=$ $L_{k}-L_{k-1}=\lim _{n \rightarrow \infty} \lambda_{n, k}\left(\right.$ with $\left.L_{-1}=0\right)$. Equation (13) also shows that, for $k=0,1,2, \ldots$, the series $\sum_{n=0}^{\infty} \lambda_{n+1, k+1} / \lambda_{n+1}$ is convergent; consequently, by (11), $l_{k}=0$ for $k=1,2, \ldots$.

Next, suppose that $\lambda_{0}>0$. Define $\bar{\lambda}_{0}=0$ and $\bar{\lambda}_{n}=\lambda_{n-1}$ for $n=1,2,3, \ldots$, and define $\lambda_{n, k}$ in the same way as $\lambda_{n, k}$ but with λ_{n} replacing λ_{n}. Then $\lambda_{n, k}=\lambda_{n+1, k+1}$ for $0 \leqslant k \leqslant n$, and hence $l_{k}=\lim _{n \rightarrow \infty} \lambda_{n, k}=\mathcal{l}_{k+1}=\lim _{n \rightarrow \infty}$ $\lambda_{n+1, k+1}=0$ for $k=0,1,2, \ldots$. This establishes (i).

Suppose now the hypotheses of (ii) hold. Then, for sufficiently small positive η,

$$
\begin{aligned}
\lambda_{n, 0}= & -\lambda_{1} \lambda_{2} \cdots \lambda_{n} \frac{1}{2 \pi i} \int_{\Gamma_{n}} \frac{f(z) d z}{-z\left(\lambda_{1}-z\right) \cdots\left(\lambda_{n}-z\right)} \\
= & -\left(\lambda_{1}+\eta\right) \cdots\left(\lambda_{n}+\eta\right) \frac{\gamma_{n}}{2 \pi i} \\
& \times \int_{\Gamma_{n}} \frac{f(z-\eta) d z}{(\eta-z)\left(\lambda_{1}+\eta-z\right) \cdots\left(\lambda_{n}+\eta-z\right)}
\end{aligned}
$$

where $0 \leqslant \gamma_{n}=\lambda_{1} \lambda_{2} \cdots \lambda_{n} /\left(\lambda_{1}+\eta\right) \cdots\left(\lambda_{n}+\eta\right) \leqslant 1$. Since $\sum_{n=1}^{\infty} 1 /\left(\lambda_{n}+\right.$ $\eta)=\infty$ when (11) holds, it follows from the earlier part of the proof that $l_{0}=0$. This completes the proof.

It follows from Lemma 1 , with $f(z)=t^{z}$, and from (4) that, for $0 \leqslant t \leqslant 1$,

$$
\begin{align*}
\lim _{n \rightarrow \infty} \lambda_{n, k}(t) & =1 & & \text { if } t=0, k=0, \text { and } \lambda_{0}=0, \\
& =0 & & \text { otherwise. } \tag{14}
\end{align*}
$$

Next, for $\lambda_{0}=0$, one has [5, p. 46]

$$
\frac{1}{z}=-\sum_{k=0}^{n} \frac{\lambda_{k+1} \cdots \lambda_{n}}{\left(\lambda_{k}-z\right) \cdots\left(\lambda_{n}-z\right)},
$$

and hence if $0 \in \Omega$ (so that f is holomorphic at 0), then

$$
\frac{1}{2 \pi i} \int_{\Gamma_{n}} \frac{f(z)}{z} d z=f(0)=\sum_{k=0}^{n} \lambda_{n, k}
$$

For $\lambda_{0}>0$, put $\lambda_{0}=0, \lambda_{n}=\lambda_{n-1}$ for $n \geqslant 1$, to get

$$
\sum_{k=0}^{n} \lambda_{n, k}=\sum_{k=0}^{n+1} \lambda_{n+1, k}-\lambda_{n+1,0} \rightarrow f(0)
$$

provided that $\lambda_{n+1,0} \rightarrow 0$. In particular, with $f(z)=t^{z}$, this, together with (12), yields

$$
\begin{equation*}
0 \leqslant \lambda_{n, j}(t) \leqslant \sum_{k=0}^{n} \lambda_{n, k}(t) \leqslant 1 \tag{15}
\end{equation*}
$$

and, in view of (4),

$$
\begin{align*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \lambda_{n, k}(t) & =0 & & \text { if } t=0 \text { and } \lambda_{0}>0 \tag{16}\\
& =1 & & \text { otherwise } .
\end{align*}
$$

Borwein and Jakimovski show in [1] that if (11) holds and $\lambda_{n} \rightarrow \infty$, then for the matrix given by (2) to be regular, it is necessary that $f(z)=\int_{0}^{1}$ $t^{z} d \alpha(t)$ for some $\alpha \in B V$. There is thus no real loss in so restricting f in the following theorem.

Theorem 1. Suppose that (11) holds and $f(z)=\int_{0}^{1} t^{z} d \alpha(t)$ for some $\alpha \in B V$ with

$$
\begin{equation*}
\alpha(1)-\alpha(0)=1 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(0+)=\alpha(0) \tag{18}
\end{equation*}
$$

Then the matrix $\left\{\lambda_{n, k}\right\}$ defined by (2) is regular.
Proof. By Lebesgue's theorem on bounded convergence, it follows from (14) and (18) that, for $k=0,1,2, \ldots$,

$$
\lambda_{n, k}=\int_{0}^{1} \lambda_{n, k}(t) d \alpha(t) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

and from (16) and (18) that

$$
\sum_{k=0}^{n} \lambda_{n, k}=\int_{0}^{1}\left(\sum_{k=0}^{n} \lambda_{n, k}(t)\right) d \alpha(t) \rightarrow \int_{0}^{1} d \alpha(t) \quad \text { as } n \rightarrow \infty .
$$

Also, from (15),

$$
\sum_{k=0}^{n}\left|\lambda_{n, k}\right| \leqslant \int_{0}^{1}|d \alpha(t)| .
$$

In view of (17), the matrix is regular.

Generalized Hölder and Cesàro Matrices

The next lemma concerns products of certain matrices.

Lemma 2. Suppose that g and h are holomorphic in Ω and are defined at λ_{0} even when $\lambda_{0} \notin \Omega$. Let A, B, and C be the Hausdorff matrices given by (2) with f replaced by g, h, and $g h$, respectively. Then $C=A B$.

Proof. It is sufficient to establish the result for $\lambda_{0}=0$ since the general result then follows in the usual manner by defining $\lambda_{0}=0$ and $\lambda_{n}=\lambda_{n-1}$ for $n \geqslant 1$. For $m=0,1,2, \ldots$, let A_{m}, B_{m}, and C_{m} be the principal $m \times m$ minors of the matrices A, B, and C, respectively. It is now sufficient to show that $C_{m}=A_{m} B_{m}$. Suppose first that $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}$ are distinct. Then, as in Hausdorff [3], there is a matrix ρ such that $A_{m}=\rho^{-1} \alpha \rho, B_{m}=\rho^{-1} \beta \rho$, and $C_{m}=\rho^{-1} \alpha \beta \rho$, where α and β are the diagonal matrices with $g(k)$ and $h(k)$, respectively, in the k th position along the diagonal. Thus $C_{m}=A_{m} B_{m}$, and a continuity argument shows that this equation remains valid if certain of the λ_{v} 's are allowed to coalesce. This completes the proof.

For κ real, the Hölder matrix H_{κ} is the generalized Hausdorff matrix obtained from (2) by taking

$$
f(z)=(z+1)^{-\kappa} .
$$

For $\kappa>-1$, the Cesàro matrix C_{κ} is the generalized Hausdorff matrix obtained from (2) by taking

$$
f(z)=\frac{\Gamma(\kappa+1) \Gamma(z+1)}{\Gamma(z+\kappa+1)} .
$$

Hausdorff, in [3], showed that if $0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n} \rightarrow \infty, \sum_{n=1}^{\infty}$ $\left(1 / \lambda_{n}\right)=\infty$, and $\kappa>-1$, then H_{κ} and C_{κ} are quivalent: i.e., $s_{n} \rightarrow s\left(H_{\kappa}\right)$ if and only if $s_{n} \rightarrow s\left(C_{\kappa}\right)$. It is now easy to extend the result as follows.

Theorem 2. Suppose $\lambda_{0} \geqslant 0, \lambda_{n}>0$ for $n \geqslant 1, \sum_{n=1}^{\infty}\left(1 / \lambda_{n}\right)=\infty$, and $\kappa>-1$. Then H_{κ} and C_{κ} are equivalent.

Proof. Let

$$
g(z)=\frac{\Gamma(\kappa+1) \Gamma(z+1)}{\Gamma(\kappa+z+1)}(z+1)^{\kappa}
$$

It follows from results of Rogosinski [6, pp. 188ff., 167] that $g(z)=\int_{0}^{1}$ $t^{z} d \alpha_{1}(t)$ and $1 / g(z)=\int_{0}^{1} t^{z} d \alpha_{2}(t)$ where $\alpha_{i} \in B V, \alpha_{i}(0+)=\alpha_{i}(0)$, and $\alpha_{i}(1)-\alpha_{i}(0)=1$ for $i=1,2$. The desired conclusion now follows from Theorem 1 and Lemma 2.

References

1. D. Borwein and A. Jakimovski, Generalization of the Hausdorff moment problem, Canad. J. Math. 33 (1981), 946-960.
2. F. Hausdorff, Summationsmethoden und Momentfolgen, I, Math. Z. 9 (1921), 74-109.
3. F. Hausdorff, Summationsmethoden und Momentfolgen, II, Math. Z. 9 (1921), 280-299.
4. G. H. Hardy, "Divergent Series," Oxford Univ. Press, London/New York, 1949.
5. G. G. Lorentz, "Bernstein Polynomials," Univ. of Toronto Press, Toronto, 1953.
6. W. W. Rogosinski, On Hausdorff methods of summability, Proc. Cambridge Philos. Soc. 38 (1942), 166-192.

[^0]: * This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

