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INTRODUCTION

Given a matrix A = {an.k } (n, k=O, 1, 2, ... ) and a sequence {sd, the
notation sn--->s(A) means that L:k~O an,ksk converges for n=O, 1,2,... and
tends to s as n ---> 00. The matrix A is said to be regular if s" ---> s(A)
whenever Sn ---> s. Necessary and sufficient conditions for A to be regular are

sup L !an,kl < 00;
n k~O

lim an•k = 0,
n ~ 00

00

lim L an,k = 1.
n-ook=O

k = 0, 1,2,... ;

Suppose throughout that {An} is a sequence with

(1)

Let Q be a simply connected region that contains every positive A", and
suppose that, for n = 0, 1,2,..., Tn is a positively sensed Jordan contour
lying in Q and enclosing every Ak E Q with 0::::; k::::; n. Suppose that f is
holomorphic in Q and that f(A o) is defined even when Ao¢ Q, Define

_ _ ... _1 f f(z) dz i5
A",k - Ak+ 1 An 2' (A ) (A ) + k'TU Tn k - Z .•. n - Z

=0

for O::::;k ::::;n,

for k>n, (2)
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where Ok = j()..o) if k = 0 and Ao ¢ Q, and Ok = 0 otherwise. Here and
elsewhere the convention that products like Ak + I ... An = I when k = n is
observed. In many applications j is a Mellin transform

j(z) = J: tZd(J.(t) (3)

where (J. E BV, the space of functions of bounded variation on [0, 1]. In this
case the region Q in which j is holomorphic contains {z: Re(z) > O}; if
0= Ao¢ Q and, with this j in (2), the order of integration is changed, then
the value of An,k is unaffected by allowing Fn also to enclose Ao and taking
00 =0.

Matrices whose entries are given by (2) are called generalized Hausdorff
matrices, The most familiar examples are those for which j(z) is given by
(3), If 0 = Ao< Al < ... < An' An -+ 00 and L:~ I (l/An)= 00, then (2) yields
the matrices considered by Hausdorff in [3]; further, if An = n, they are the
matrices discussed by Hausdorff in [2] (see also Hardy [4]). The latter
include the familiar Cesaro, Holder, and Euler matrices,

For 0 < t <; 1, let An,k(t) denote the value of )'n.k obtained from (2) by tak­
ing j(z) = tZ, and let An.k(O) = An.k(O+). Note that, from the theory of
residues, An,dt), for t> 0, is a linear combination of the functions t)', logr(t),
s = 0, 1,2,..., r = 0, 1,2,..., the coefficient of t)·o being 1 when Ao= O. Hence,
since As>O for s~ 1,

(cf. [1, p. 947]).
Let

if k = 0 and Ao = 0,

otherwise (4)

Do=(l+Ao)do=l, (5)

Dn=(l+;J(l+;J"'(l+L)=(l+An)dn for n~1. (6)

Then, for n ~ 0,

n

Dn=An+ldn+l=l-do+ I dk·
k~O

It is known that if all the An'S are different, then

(7)

for O<;k<;n. (8)
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See [3, p. 294]. A simple continuity argument applied to (2), withf(z) = t Z
,

shows that (8) remains valid when different An's are allowed to coalesce.
The generalized Hausdorff matrix M d = {an,d with an.k = dklDn for
o~ k ~ n is a weighted mean matrix when do = 1 and otherwise differs in
only a minor way from a weighted mean matrix. Conversely, every
weighted mean matrix with positive weights may be regarded, in view of
(5), (6), (7), and (8), as a generalized Hausdorff matrix with Ao=O. The
matrix M d is regular if and only if Dn --+ 00. Note the following equivalen­
ces:

., ~ 1
Dn --+ 00 IS eqUivalent to 1... ;:- = 00;

n= 1 n

dnlD n --+ 0 is equivalent to An --+ 00;

dnlDn '" is equivalent to An 7' .

REGULARITY

In this section conditions are established for the regularity of generalized
Hausdorff matrices. The following lemma is required; it concerns matrices
Pn.d given by (2) with the functionfsatisfying, for some real number c, a
condition of the form

for r = 0, 1,2,... and x> c; (9 )

and the region Q, in which f is holomorphic, satisfying the condition

Q::::;(c,oo). (10)

LEMMA 1. (i) If (9) and (10) hold with c=O, then lk=limn~oo An,k
exists for k = 0, 1, 2, .... If, in addition,

00 1
L ;:-=00,

n=l n

(11 )

then lk=Ofor k= 1,2,3,..., and 10 =0 if Ao>O.

(ii) If Ao=O, (9) and (10) hold with c= -8 for some 8>0, and (11)
holds, then 10 = O.

Proof If a~ Av ~ b for k ~ v~ n, then

__1 f f(z) dz = (-1 r- k
f(n-k)(O (12)

2ni rn(Ak-Z)"'(An-Z) (n-k)!
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for some ~ E [a, b]. (See Lorentz [5].) Further, the recursion formula

357

is an immediate consequence of (2). Letting A n•k = L~~o An•v for °~ k ~ n, it
follows, as in Hausdorff [3], that

Suppose now that Ao= 0, then, by (12), An + I.k + 1 ~°SO that, by (13),
An,k ~ An + I,k ~ 0. Hence, L k = limn ~ 00 An,k exists and so does Ik =
L k - L k_ I = limn~ 00 An.k (with L_ l =0). Equation (13) also shows that, for
k = 0, I, 2,..., the series L:'~ 0 An + l,k + 1/An + 1 is convergent; consequently, by
(11), Ik = °for k = 1, 2, ....

Next, suppose that Ao> 0. Define 10 = °and In = An _ 1 for n = 1, 2, 3,... ,
and define An.k in the same way as An,k but with An replacing An' Then
)'n.k=An+l.k+1 for O~k~n, and hence Ik=limn~oo An.k=lk+1 =limn~oo
An + l,k + 1 = °for k = 0, 1, 2,.... This establishes (i).

Suppose now the hypotheses of (ii) hold. Then, for sufficiently small
positive If,

= -(A l +lf)"·(An+lf)2
Yn

.
nr

f f(Z-lf)dz

x Tn (If-Z)(A l +lf-Z)'''(An+lf-Z)

where 0~Yn=AIA2·"An/(Al+lf)"·(An+lf)~1. Since L:'=I 1/(An+
If) = (fJ when (11) holds, it follows from the earlier part of the proof that
10 = 0. This completes the proof.

It follows from Lemma 1, with f(z) = t Z
, and from (4) that, for °~ t ~ 1,

=0

if t = 0, k = 0, and Ao= 0,

otherwise. (14)

Next, for Ao = 0, one has [5, p. 46]
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and hence if 0 E Q (so that f is holomorphic at 0), then

n n+ I

L An,k= L An+1,k- An+1,0-'f(0)
k~O k=O

provided that An + 1,0 -. O. In particular, with f(z) = t Z
, this, together with

(12), yields

n°~ Ani t) ~ L An,k( t) ~ 1
k~O

and, in view of (4),

(15)

= 1 otherwise.

n

lim L An,dt) = 0
n-..ook=o

if t = 0 and Ao> 0,
( 16)

Borwein and Jakimovski show in [1] that if (11) holds and An -. 00,

then for the matrix given by (2) to be regular, it is necessary thatf(z) = Jb
t Z da(t) for some aEBV. There is thus no real loss in so restricting fin the
following theorem.

THEOREM 1. Suppose that (11) holds and f( z) = J6 t Z da( t) for some

aE BV with

and

a(I)-a(O)= 1

a(O+ ) = a(O).

(17)

(18)

as n --+ 00;

Then the matrix {An,d defined by (2) is regular.

Proof By Lebesgue's theorem on bounded convergence, it follows from
(14) and (18) that, for k=O, 1,2,.",

An,k = I: An,k(t) da(t) -.0
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and from (16) and (18) that

k~O An,k = f; C~o An,k(t)) drx(t) - (drx(t)

Also, from (15),

In view of (17), the matrix is regular.

as n - 00.

GENERALIZED HOLDER AND CESARO MATRICES

The next lemma concerns products of certain matrices.

LEMMA 2. Suppose that g and hare holomorphic in Q and are defined at
,1.0 even when ,1.0 f/: Q. Let A, B, and C be the Hausdorff matrices given by (2)
with f replaced by g, h, and gh, respectively. Then C = AB.

Proof It is sufficient to establish the result for ,1.0 = 0 since the general
result then follows in the usual manner by defining Ao= 0 and An = An _ 1 for
n ~ 1. For m = 0, 1,2,..., let Am, B"" and Cm be the principal m x m minors
of the matrices A, B, and C, respectively. It is now sufficient to show that
Cm= AmBm. Suppose first that ,1.0' AI,"" Am are distinct. Then, as in
Hausdorff [3], there is a matrix p such that Am =P-I rxp , Bm=P-I f3p, and
Cm= p -l rx f3p, where rx and f3 are the diagonal matrices with g(k) and h(k),
respectively, in the kth position along the diagonal. Thus Cm= AmBm, and
a continuity argument shows that this equation remains valid if certain of
the Av's are allowed to coalesce. This completes the proof.

For K real, the Holder matrix H K is the generalized Hausdorff matrix
obtained from (2) by taking

For K > -1, the Cesaro matrix CK is the generalized Hausdorff matrix
obtained from (2) by taking

f(z) = T(K+ 1) T(z+ 1).
T(z + K + 1)

Hausdorff, in [3], showed that if 0=,1.0<,1.1< ... <An-oo, L::~I

(I/An) = 00, and K> -1, then H K and C K are quivalent: i.e., sn-s(HJ if
and only if sn - s( CK)' It is now easy to extend the result as follows.
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THEOREM 2. Suppose A.o~O, A.n>O for n~ 1, L:~l (1jA.n)= 00, and
K> -1. Then H K and CK are equivalent.

Proof Let

(z)= F(K+ 1) r(z+ 1) (z+ 1)".
g r(K+z+1)

It follows from results of Rogosinski [6, pp. 188fT., 167] that g(z) = Jb
tZ dlJ.l(t) and 1jg(z) = Jb tZ dlJ.it) where rt.;EBV, IJ.;(O+ )=rt.;(0), and
rt.;(1)-rt.;(0)= 1 for i= 1, 2. The desired conclusion now follows from
Theorem 1 and Lemma 2.
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